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Abstract: The number of trees with n labeled terminal vertices grows too 
rapidly with n to permit exhaustive searches for Steiner trees or other kinds 
of optima in cladistics and related areas Often, however, structured con- 
straints are known and may be imposed on the set of trees to be scanned 
These constraints may be formulated in terms of a consensus among the 
trees to be searched We calculate the reduction in the number of trees to be 
enumerated as a function of properties of the imposed consensus 
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The number of trees with n labeled terminal vertices grows so rapidly 
that exhaustive searches for optimal trees in classification, numerical taxon- 
omy, cladistics and related areas becomes unfeasible for relatively small 
values of n. Often, however, structural constraints are known or may be 
imposed on the set of trees to be scanned for optimality. For example, 
Sankoff, Cedergren and McKay (1982) and Gray, Sankoff and Cedergren 
(1984), in the study of molecular evolution, required that a tree consist of 
several given subtrees, each one fixed a priori, and joined together through a 
number of additional edges and vertices Aho et  aL (1981) searched for 
rooted trees obeying given combinations of constraints on configurations of 
triples or quadruples of terminal vertices. In this paper, we impose con- 
straints on configurations of arbitrary subsets of the terminal vertices. 
These constraints may be considered to constitute a consensus among sub- 
trees of the trees to be searched. 
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Figure 1 Edge addition 

One objective will be to calculate the reduction in the number of trees 
to be generated as a function of the properties of the imposed subtree con- 
sensus. First we will enumerate free (unrooted) binary trees, i.e., trees res- 
tricted to nonterminal vertices of degree three, though we will allow the 
consensus to have nonterminal vertices of  arbitrary degree (not less than 
three). We will show that the reduction in the number of trees depends 
only on general characteristics of the subtree consensus, and not on its 
detailed structure We will then show that this independence from struc- 
tural detail also holds in the enumeration of nonbinary, or multifurcating, 
trees. 

We make the following definitions 

Let T be a free tree with n labeled terminal vertices and m nonter- 
minal vertices An edge addition transforms T into T', a tree with 
n + 1 labeled terminal vertices. This is carried out, as in Figure 1, 
by replacing any of the b edges of T, say the edge between x and y 
(where x or y may be labeled or not) by two new vertices w and z 
and three new edges, between x and w, between w and y,  and 
between w and z. Vertex z, which is a terminal vertex, is given a 
new label. Note that the new tree T' has b + 2 edges, m + 1 non- 
terminal vertices, and has been constructed in one of b different 
ways. 

. A vertex addition transforms T into T", which also has n + 1 
labeled terminal vertices. This is carried out,  as in Figure 2, by 
adding a new labeled terminal vertex z, plus a new edge between z 
and any of the preexisting nonterminal vertices T" has b + 1 
edges, m nonterminal vertices and has been constructed in one of 
rn ways. 
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Figure 2 Vertex addition 

We say of two trees T and T' with labeled terminal vertices, that T 
is a subtree of T' if T '--  T or if T' can be constructed from T by a 
series of edge additions and/or vertex additions as in Figure 1 or 
Figure 2 Note that if T and U are different trees with the same 
labeled terminal vertices, not both of them can be subtrees of T' 

4 An edge contraction is an operation which transforms a tree U to a 
tree T by replacing two adjacent nonterminal vertices vl and v2, of 
degrees dl and d 2 respectively, as well as their common edge, by a 
single vertex v whose adjacent vertices are the remaining vertices 
adjacent to either v I or v 2 The degree of v is d~ + d 2 -  2 This is 
illustrated in Figure 3. 

A tree U' is compatible with a tree T if U' has a subtree U with the 
same terminal vertex labels as T, where U- -  T or U can be 
transformed to T through a series of edge contractions, as in Figure 
4 

The notion of consensus of  free trees is not often encountered in the 
literature Nevertheless it is as appropriate in the context of Steiner trees 
(e.g., Graham and Foutds 1982), Wagner trees (Farris 1970), or other 
unrooted, nonhierarchically constructed trees, as is the more familiar con- 
sensus in the context of Lance-Williams (1967), Camin-Sokal (1965), Dollo 
(Le Quesne 1974, Farris 1977) and other inherently rooted trees. The 
(strict) consensus of T1 . . . . .  Th, free trees on n labeled terminal vertices, 
is the unique tree on n labeled terminals with which all of Tl . . . .  T h are 
compatible, and which has the maximum number of nonterminal vertices 
possible, i e ,  conserves as much as possible the branching information con- 
tained in the individual T~ . . . .  T h (Uniqueness is easily proved using the 



352 M Constantinescu and D Sankoff 

a b e 
a b c 

e 

U T 

Figure 3 Edge contraction 

a. b ,a b 

C C 

e 

U' U T 

Figure 4 U' compatible with T 

bipartition notation for trees, cf. Buneman 1971, Waterman and Smith 
1978.) 

We first ask how many binary trees on n terminal vertices are compati- 
ble with a given tree T on k ~<n terminal vertices. Let  
N ( n )  -- 1.3.5 . . . . .  (2n - 5) = (2n - 4 ) ! / 2 " - 2 ( n  - 2)I. Essentially the 
following result was stated by Rohlf  (1982). 

Theorem 1 Let T be a free tree with k labeled terminal vertices and nonterminal 
vertices v I . . . . .  v m, where m <~ k -  2, o f  degree d I . . . . .  d m respectively (all 
d i >i 3). Then the number o f  free binary trees whose n >i k labeled terminal 
vertices include the k terminals o f  T, and which are compatible with T, is 
[ N ( n ) /  N ( k ) ]  Iliml N(d , ) .  
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Proof We first consider T to be a binary tree. In this case it is necessary to 
prove only that the number of  binary trees with n terminal vertices, and 
with T as a subtree, is N ( n ) / N ( k ) .  If n = k, only T contains itself and 
N ( n ) / N ( k )  --- 1 For n >  k, how many ways can we construct a tree with 
n labeled terminal vertices from one with only k, using a series of  edge 
additions only? (Vertex additions would destroy the binary character of  the 
tree.) Supposing N ( n ) / N ( k )  correctly counts compatible trees for a certain 
value of  n, then N ( n  + 1 ) / N ( k )  is correct for trees on n + 1 terminals, 
since each edge addition can be carried out in 2n - 3 different ways, there 
being 2n - 3 edges in a binary tree, and (2n - 3) N ( n )  -~ N ( n  + 1). By 
induction, N ( n ) / N ( k )  is the number of binary trees with n terminals and 
with T as a subtree, for all n. 

Now suppose T contains a vertex v which has degree d >  3. Let 
v 1 . . . .  v a be the vertices adjacent to v. Consider any unrooted binary tree 
V on d labeled terminal vertices. We can create a new tree W by replacing 
v and its incident edges in T by V, as in Figure 5, where the d labeled ter- 
minal vertices of V are stripped of their labels while being identified with 
v I . . . . .  v a. Each such V, of which there are N ( d ) ,  yields a different W 
And each such W is compatible with T since it may be transformed back 
into T by contracting all the edges in V, in any order, except those incident 
with vl . . . . .  va 

This procedure may be repeated on any remaining vertex in W which 
has degree greater than three. Continuing in this way we must eventually 
arrive at a binary tree U on k terminal vertices which is compatible with T. 
Note that the order in which the high degree vertices are replaced is imma- 
terial, since the replacement of  v by V does not change the degree of  any 
other vertices There are clearly H ; ~  N ( d )  different trees U which can be 
obtained by this process (recall N(3) = 1). 

Any tree on n terminal vertices containing any of these trees U as a 
subtree is also compatible with T, by definition, and there are N ( n ) / N ( k )  
binary trees specific to each such subtree U. • 

Note that T is the strict consensus of all the subtrees U constructed in 
the proof above 

This result tells us that the number of trees compatible with T is not 
dependent on the detailed shape of T; all that matters is n, k and the 
degrees of the nonterminal vertices 

To apply Theorem 1 in the context of searching for optimal trees, we 
may calculate how large k must be to compensate for the rapid increase in 
N ( n ) .  For example, suppose our computational capacity is limited in terms 
of  the total number of  trees which can be evaluated for optimality, and sup- 
pose for each n we will consider a fixed binary subtree (d /~-3)  on 
k ~ k ( n )  terminal vertices Then Theorem 1 assures us (via Stirling's 
approximation) that if 1 - k / n  approaches 0 as fast as (n log n) -1, then 
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Figure 5 Replacing vertex (d>3) by binary tree 

the number of trees to be searched is bounded; i e ,  the search is feasible. 
On the other hand, if 1 - k /  n approaches 0 only as fast as n - l ,  the number 
of  eligible trees increases without bound. 

We next consider the enumeration of nonbinary trees Though there is 
no closed form formula analogous to N ( n )  for counting multifurcating 
trees, the basic arguments of Theorem 1 carry through nonetheless in the 
more general case. 

Let F ( n )  be the number of free trees with n labeled terminal vertices 
(all nonterminal vertices of  degree greater than two) Let F ( n , m )  be the 
number of these which have m nonterminal vertices 

Theorem 2 Let T be a free tree with k labeled terminal vertices and nonterminal 
vertices v I . . . .  v m, of  degree d I . . . .  d,n respectively (all di>/ 3) Then the 
number o f  free trees whose n >1 k labeled terminals include the k terminals o f  T, 
and which are compatible with T, depends only on n ,  m and d 1, , d m 

Proof The first step is to determine how many trees on k terminal vertices 
are compatible with T In a way analogous to our constructions of Theorem 
1, we can replace in T any nonterminal vertex v of degree d >  3 with one 
of  F(d)  different trees V to create a new tree W compatible with T This 
may be done independently for all m nonterminal vertices of T so that there 
are a total of I/i'=l F(di) different trees U on k terminal vertices compatible 
with T This independence means that the number of edges b (and the 
number of nonterminal vertices m ' =  b + 1 - k), though not the same for 
all such trees U, occurs with frequency f r ( b ) ,  determined entirely by 
dl . . . . .  dm 

It remains to enumerate the trees on n labeled terminal vertices which 
contain each U as a subtree. This may be done through counting the 
different combinations of edge and vertex additions with the well-known 
recursion 
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F(n ,m)  = mF(n - 1,m) + (n + m - 3) F(n - 1,m - 1) 

Under the initial conditions f ( k , 1 )  -- 1 and f ( 3 , j )  -- 0 for all k>/ 3 and all 
j >  1, this recursion is used often in counting multifurcating trees (e g ,  Fel- 
senstein 1978) However, under the initial conditions F ( k , b + l - k ) =  1 
and F ( k , j ) - - - 0  for j ~ b + l - k ,  it can be seen to count all trees on n 
labeled terminal vertices containing a specific subtree U on k labeled termi- 
nal vertices, where U has m'--- b + 1 - k nonterminal vertices. 

Since the recursion depends only on n, k, and m', and since f r ( b )  the 
number of different subtrees U with m' terminals is determined entirely by 
dl . . . .  d,,,, the theorem is proved • 

Results analogous to Theorems 1 and 2 may be proved for rooted 
binary and nonbinary trees as well 

Can these theorems b e  generalized to the case of two or more sets of 
constraints? The form of Theorem 1 suggests that the number of binary 
trees with n terminals labels containing binary subtrees 7"1 . . . . .  T, with dis- 
joint sets of kl, , k, terminal vertices respectively, might be 
N ( n ) / I I ~  1 N(k~) Indeed for the smallest cases, where r -- 2, n ~<10 and 
ki~<5, this suggestion is valid. In general, however, it is not For example, 
if r = 2, n = 12, kl = k2=  6, it is easily verified that N(n)  is not even 
divisible by N(k l )  N(k2). Thus if there are two or more sets of constraints, 
even if these pertain to disjoint sets of terminal vertices, and even if they 
are all representable by binary structures, the number of trees satisfying 
them depends on more than just the number of vertices involved 

The situation is even more difficult when there is more than one set of  
constraints and these are not disjoint, as in the problem discussed by Gor- 
don (1986) He defines a "strict consensus supertree" of two or more trees 
which is compatible (if possible) with all of them, and gives an algorithm for 
constructing this supertree Our results tie in with his in that the total 
number of compatible supertrees satisfies our Theorem 2, when applied to 
the strict consensus supertree 
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